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ABSTRACT

Deng, P., Cheng, Q., Chen, X., Chen, I.P., Zhang, Y., Li, F.Y. and Guan, L., 2021. Seismic
image enhancement by double-weighted stacking. Jowrnal of Seismic Exploration, 30: 1-20.

Normal-moveout velocity analysis using semblance spectrum and common-midpoint
stacking after normal-moveout correction are two indispensable procedures in seismic
reflection data processing, especially for random noise attenuation, velocity model
estimation, and imaging quality enhancement. During this process, weighting functions
have been frequently used to improve the resolution of semblance and the performance of
stacking. In this paper, the interactive relationship between semblance and stacking
allows a new method of double-weighted stacking to be created. This method applies the
same local-similarity-weighting function to the calculation of both semblance and
stacking, aiming to enhance the final stacked image sections. The synthetic and field
data numerical experiments have demonstrated that our new approach enhances the
signal-to-noise ratio and the reflection-event continuity compared with conventional
processing flows.

KEY WORDS: semblance spectrum, normal-moveout correction, double-weighted stacking,
local similarity, random noise attenuation, image quality enhancement.
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INTRODUCTION

Stacking technique is quite significant in the tasks of seismic
community including preprocessing (Li and Gao, 2014; Chen et al., 2014a,b;
Wu et al., 2016; Zhong et al., 2016; Bai and Wu, 2017), Gaussian beam and
wave-equation reverse-time migration (Liu et al., 2011; Bai et al., 2016; Ren
and Tian, 2016; Chen et al., 2017a,b), full-waveform inversion (Li et al.,
2016; Chen et al., 2016), and lithological interpretation (Zhang et al., 2016).
It sums the collection of seismic traces with the same midpoint from different
shot-receiver pairs, which increases the signal-to-noise ratio (SNR) and the
imaging quality of seismic data. Conventional common-midpoint (CMP)
stacking is an equal weight or mean stacking that applies the same weighting
value on each trace, which is inappropriate for real seismic data because
different traces could suffer from different moveout and noise contamination,
i.e., nonstationary nature of seismic data. In this case, alternative-weighted
stacking methods (Zhang et al., 2004; Neelamani et al., 2006; Trickett,
2007; Liu et al., 2009; Sanchis and Hanssen, 2011; Zhang et al., 2014; Xie
et al., 2017; Wu and Bai, 2018a,b) were usually used to overcome the
problem of trace difference, in which the different weighting functions for
each trace is calculated and applied before stacking.

The inputs for CMP stacking are normal-moveout (NMO) corrected
CMP gathers using picked velocities from the semblance spectra. The
semblance spectra measure multichannel semblance on the velocity-
scanning NMO-corrected gathers; therefore, the accuracy of velocity
picking directly influences the CMP-stacking effect. Luo and Hale (2012)
introduced a resolution- improved semblance by weighting the data to
account for the large-offset data and dampen the small-offset data that
increases the resolution of the resulted velocity-scanning map. Chen et al.
(2015a) utilized a different weighting strategy for improved velocity
spectrum resolution by weighting the data according to the local
similarity of each trace with a reference trace within the same CMP gather.
Deng et al. (2016) used to a hybrid AB semblance and local similarity
strategy to achieve an optimal stacking of the CMP gathers with class II
amplitude-variation-with-offset (AVO) polarity-reversal anomaly. AVO-
friendly but resolution-loss disadvantage in the AB semblance was dealt with
a Dbootstrapped differential semblance (Wilson and Gross, 2017).
Meanwhile, Ebrahimi et al. (2017) used a weighted AB semblance to
increase the resolution both in the velocity and time directions.

For improving both the resolution of NMO velocity analysis and the
SNR of CMP stacking considering trace difference, we propose to combine
local-similarity-weighted semblance and local-similarity-weighted stacking.
In this way, the velocity analysis and the subsequent stacking can be an
interactive process, because both steps require a good-quality reference
trace. More accurate weighted velocity analysis produces flatter NMO-
corrected CMP gathers, so that a higher-quality reference trace is provided for



the subsequent weighted stacking. Weighted-stacked trace after CMP
stacking then could be used backward as a better reference trace in
calculating the weighted semblance for higher resolution in low-SNR data.
Therefore, high-resolution velocity analysis and high-quality stacking can
contribute positively to each other. Usually three iterations of recursive
process are used to obtain the final SNR-allowed and event-continuous
stacking sections. Fig. 1 shows the workflow of our proposed double-
weighted stacking (DWS) method. The green arrow indicates the
recursive process. After the method review, synthetic examples with both
high- and low-SNR CMP gathers are tested to demonstrate the
performance of our approach. A 2D pre-stack marine dataset from the
Gulf of Mexico is also used to implement the workflow of the weighted-
velocity analysis and weighted stacking, which demonstrates an obvious
improvement compared to the conventional processing flows.

CMP gather

Conventional semblance

Stacked trace as reference trace
Local similarity
weighted semblance

Local similarity between

each trace and the
Stacked trace reference trace in the

a

as reference trace same CMP gather
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Fig. 1. Workflow of double-weighted stacking.

METHOD

Local similarity

Fomel (2007) defined local similarity of vectors a and b as the square root of
element-wise product of ¢, and c,:

c = /c*¢c,, €))

where ¢, and ¢, come from two least-squares minimization problems:
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where A is a diagonal operator composed from the elements of a: A =
diag(a) and B is a diagonal operator composed from the elements of b: B
= diag(b). The least-squares problems (2) and (3) can be solved with the help
of shaping regularization (Chen et al., 2015b), which is a smoothness
constraint in this case:

¢ = [x$1+T(ATA-x$1)]'l TA"b, )

¢, = [x§1+T(BTB-x§1)]'l TB'a. 5)

where T is a smoothing or shaping operator, and A, and A, are two parameters
controlling the physical dimensionality and enabling the fast convergence
when inversion is implemented iteratively. These two parameters can be
chosen as the L2 norms of A and B, respectively.

We first give a simple synthetic example to illustrate the weighting
function by local similarity. Fig. 2 is a 24-fold synthetic CMP gather after
NMO correction. There are five traces with erroneous arrivals. They are
trace 1 (2 samples earlier), trace 6 (4 samples later), trace 11 (2 samples later),
trace 16 (4 samples earlier), and trace 21 (2 samples later).

Fig. 3 shows the local-similarity-weighting function to each trace.
They are calculated by the aforementioned calculation method between each
trace and a reference trace. A conventional equal-weight or mean stacked
trace is chosen as the reference trace here. It is clearly observed that
problematic traces are weighted less than the correct traces. Furthermore,
different problematic traces have different weighting functions, which are
reasonable. More reasonable calculation of weighted semblance and
weighted stacking will contribute to a higher resolution of semblance and
higher SNR upon stacking; therefore, the principle of local-similarity-
weighting is used twice. In the next two subsections, the formulations are
given for weighted semblance and weighted stacking by local similarity,
respectively.
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Fig. 2. A synthetic CMP gather after NMO correction. There are five problematic traces

inside this gather: trace 1 (2 samples earlier), trace 6 (4 samples later), trace 11 (2

samples later), trace 16 (4 samples earlier), and trace 21 (2 samples later).
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Fig. 3. Local similarity calculated using the CMP gather in Fig. 2 with the conventional

stacked trace as a reference trace.



Local-similarity-weighted semblance

The local-similarity-weighted semblance is chosen for NMO velocity
analysis in order to improve the resolution of semblance. Conventional
semblance can be interpreted as a special case of weighted semblance with
the weighting function as a constant, whereas the similarity weighted
semblance uses local similarity as the weighting function. More reasonable
calculation of local-similarity-weighted semblance is able to produce higher
resolution, because the amplitudes with incorrect moveout are suppressed,
which reduces the stretch of summation energy in the semblance spectra.
The high-resolution semblance could provide accurate NMO velocities for
the subsequent NMO correction and stacking. Eqs. (6) and (7) show
respectively the calculation of the conventional semblance (Neidell and
Taner, 1971) and the weighted semblance.
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where w(i, j) is the weighting function, £ is the center of the time window,
2M + 1 is the length of the time window, N is the number of traces in one
CMP gather, d(i, j) is the i-th sample amplitude of the j-th trace in the NMO-
corrected CMP gather.

Local-similarity-weighted stacking

After the accurate NMO velocities are picked from the high-
resolution semblance spectra, local-similarity-weighted stacking scheme is
used to stack the flattened NMO-corrected gathers. Egs. (8) and (9) show
the calculation of conventional stacking (Mayne, 1962) and weighted
stacking (Liu et al., 2009), respectively.
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where w(i, j) is the weighting function, N is the number of traces in a CMP
gather, d(i, j) is the i-th sample amplitude of the j-th trace in the NMO-
corrected CMP gather. The local-similarity-weighted stacking is used to
substitute the weighting function w(i, j) in eq. (9) with local similarity of
each trace and a reference trace in the same CMP gather, where the local
similarity should be implemented after the soft thresholding (Donoho, 1995),
and the final weighted stacking is averaged by the total number of the non-
zero weighted samples in this CMP gather. Usually a conventional equal-
weight or mean stacked trace is chosen as the initial reference trace. Flatter
CMP gathers using high-resolution weighted semblance in the previous step
generate higher-quality reference trace for weighted stacking. In most cases,
when the SNR of seismic data is moderate, the choice of a reference trace
does not affect the stacked image sections too much. But for low-SNR data, the
first weighted-stacked trace after CMP stacking should be used backward as
the reference trace for recalculating the higher-resolution weighted
semblance. In this case, semblance and stacking become a recursive process,
and in common experiments, this iteration will not exceed three times to
achieve the final satisfactory stacking results.

EXAMPLES

We apply the proposed method of DWS to two synthetic CMP gathers
and a marine dataset. The comparison of semblance spectra, NMO velocities
picked, NMO-corrected gathers, and stacked image sections demonstrate the
better performance obtained from our approach compared with conventional
processing flows.

Synthetic examples

Fig. 4a is the first synthetic CMP gather added with low-level
Gaussian white noise (noise variance is 107). Figs. 4b and 4c present the
comparison of conventional semblance and local-similarity-weighted
semblance, where the resolution of the weighted semblance is clearly
improved. Fig. 5is the comparison between NMO-corrected gathers using
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different semblance-based velocity analysis. Fig. 6 is the comparison of
stacked traces by conventional method in Fig. 6a and DWS in Fig. 6b. It is
obvious the new method produces higher SNR than the conventional method.

Fig. 7a is the second synthetic CMP gather added with high-level Gaussian
white noise (noise variance is 10®). Figs. 7b and 7¢ present the comparison
of conventional semblance and local-similarity-weighted semblance. Through
a comparison with Fig. 4c and Fig. 7b, Fig. 7c has the highest resolution. It
could be concluded that random noise helps focus the energy but may
introduce some artifacts beyond the correct picking locations. The problem
of these artifacts could be solved with the different parameter settings for
local-similarity-weighted semblance and a wiser choice of the reference
trace described as the recursive process in the introduction part of this paper.
Fig. 8 is the comparison between NMO-corrected gathers using different
semblance-based velocity analysis. Fig. 9 is the comparison of stacked traces
by conventional method and DWS, which shows the new method in Fig. 9b
produces higher SNR than the conventional method in Fig. 9a. The random
noise gets well attenuated, especially in the shallow part of the stacked trace
in Fig. 9b. Fig. 10 shows the comparison of conventional semblance in Fig.
10a, local-similarity-weighted semblance in Fig. 10b, and recursive-weighted
semblance in Fig. 10c. Most artifacts in the conventional semblance and the
local-similarity-weighted semblance are removed by the recursive-weighting

scheme.
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Fig. 4. (a) Synthetic CMP gather added with low-level random noise; (b) Conventional
semblance; (c) local-similarity-weighted semblance.



\
/

(b

|

G0

\ ?}t,f?{}?.%&}éi)fizgiisé}% o
i?§5}2§?>i§$§}5?%1233E%£?§
| x?)\é\)))ﬂ% ‘})3{,\& AL otbr b ARy yppe - b
<>>T>>i)\>\§r}3)?kti{;ié;i;;};i}!?
\ \}?rijb,?glls >\>}>\s&>§?i§be},.§.,\.x§§¢}x\ ©
,.‘\ra,?}ers}ég&7&11.%3{7»?.,.%a(wsz?&z%:n
“ »zé{:fg—aé,e?}.s}t{el)c%é:ia!{»i%.{t&r{?}! ©
] ;zzriz—év.}}i ’ i
v%{i,z)?ai{i%ggﬁz)}%}553#%\{,;\., <t

i
. %\.‘E{‘&»&»J,)}/\’\ze}i}?xshse}}ﬂ}sl»\.%
/

:»!?J—S;aj,}? it e uk WIS ~
,T}ziia’f?.%;.,??ié.}:},%3%{.?%??2\}%

I Gl 4
(s) ey

oo,

,\{.{-?!) ,\.F}f.),;;}‘r? AR A oAb A Ak ALY\ w
%},&é—(‘»}i}\)z}?}l{kf){})fé?.%?}?f\f

\ x?%ic?z:!—ﬁzz‘,.%i;?i?;iké»éiv e
] ,z)»4)})\»,,Z?Kte{.\,{!yié?i);gé‘?}{?;{k}}iv

,‘\J,}L}\—,‘,.i.rS;,?.»)e;k)F}.gf}a3&.;.})3.} @©
,\,\r,Zz g?:cﬁ.,)\?}}z;,{é}»;i,;,,l,i}?@&%{))
v}

s »z}l}f,};z{i;j{}h};x?_{\,! ©
e ?r;?‘,x A A %ﬁi?lj A A AR A aiont

,; \;,%.}}?5‘%}3)\.\?};?}?}35};}&.%1)}?\2{:! ~
| ,2%)}3?%%?} },.?35;5%%)%}»!?{)}5:3%
,(,1'!}.6/?};ﬁi,}&{.}»{rﬁ{sﬁi}i}?&e}rr o
,Y..;éfz}i/.,2&214?_;1%?}25,%&éé,,

I Gl 4
(s) sy,

Trace

Trace

Fig. 5. NMO correction of the CMP gather in Fig. 4a. (a) NMO-corrected gather
using the picked velocity from the conventional semblance; (b) NMO-corrected gather

using the picked velocity from the local-similarity-weighted semblance.
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Fig. 6. Stacked trace of the CMP gather in Fig. 4a. (a) Stack by conventional
semblance and conventional stacking; (b) Stack by double-weighted stacking.
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Fig. 9. Stacked trace of the CMP gather in Fig. 7a. (a) Stack by conventional semblance
and conventional stacking; (b) Stack by double-weighted stacking.
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Fig. 10. A comparison of different semblances of the CMP gather in Fig. 7a.

(a) Conventional semblance; (b) local-similarity-weighted semblance; (c) Recursive-
weighted semblance.
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Field examples

A pre-stack field dataset from the Gulf of Mexico (Claerbout, 2005)
is used to test our proposed method. Fig. 11 shows the original data in
which there is a moderate amount of random noise seen in the reflection
events. Fig. 12 is the conventional semblance spectra and Fig. 13 is the local-
similarity-weighted semblance spectra. The semblance resolution is
enhanced by local similarity weighting. Figs. 14 and 15 show the
comparison of different NMO velocities picked from Figs. 12 and 13.
Fig. 15 shows a more accurate velocity estimation, especially in the upper
right area of the velocity field. Figs. 16 and 17 show the NMO-corrected
CMP gathers using the NMO velocities in Figs. 14 and 15. The events in
Fig. 17 are flatter resulting from a more accurate velocity estimation.
Fig. 18 is the local similarity calculated from the NMO-corrected gathers
using local-similarity-weighted semblance-based velocity analysis. The
reference trace used here is just the conventional stacked trace. The plot
of local similarity is confirmed quite flat, which in turn demonstrates a
more accurate NMO velocity analysis by local similarity weighting. The
changes of local similarity also match with the properties seen in real data,
i.e., larger similarity seen in short-offset and shallow part of the data.
Fig. 19 is the stacking section by conventional semblance and conventional
stacking. Fig. 20 is the stacked image section by local-similarity-weighted
semblance and conventional stacking. Fig. 21 is the stacked image section
enhanced by our method that has the higher SNR, signal-energy focus,
reflection-event continuity, and structural definition.
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Fig. 11. A pre-stack field dataset from the Gulf of Mexico.
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Fig. 13. Local-similarity-weighted semblance spectra.
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Fig. 21. Double-weighted stacked image section, namely, by local-similarity-weighted
semblance and local-similarity-weighted stacking.
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DISCUSSION

This study innovates by combining two recent ideas into a complete DWS
workflow in seismic reflection data processing, and achieves encouraging
results in both synthetic and field testing examples. The proposed method
could be applied to most types of seismic reflection data. It can be
conveniently implemented based on the framework of conventional semblance
calculations and conventional CMP stacking. The key elements in the
proposed method are the local-similarity-weighted semblance calculation
and local-similarity-weighted stacking, which can be found in the open-
source platform, Madagascar; thus, it is worth developing routine processing
modules for implementing the proposed workflow.

This method can be applied to data containing sparsely-spaced events
in the synthetic data and the closely-spaced events in the field data. Fig. 4c
shows an incorrect velocity analysis in the shallow data before the first event.
Because of this, local-similarity-weighted semblance may be more
appropriate for the analysis of the CMP gathers with closely-spaced reflection
events, though the continuity of this semblance seen in Fig. 13 is still waiting
to be improved. Meanwhile, through a comparison of Figs. 4c and 7c, the
influence of random noise could focus energy but unfortunately introduce
artifacts.

Through a comparison of the changes among Figs. 19, 20 and 21, it
could be observed that the improvement from Figs. 20 to 21 is larger than
that from Figs. 19 to 20. This indicates single weighted-stacking scheme
plays a more important role than single weighted-semblance scheme in
improving the final stacking effect.

For low-SNR seismic data contaminated by strong noise from
subsurface complexity, a recursive process should be used to obtain higher
resolution for the recursive-weighted semblance. Higher-resolution
recursive-weighted semblance could provide a higher-quality reference trace
for weighted stacking, and the entire process leads to an iteration. Although
this iteration adds computation cost to the semblance calculations, CMP
gather processing can be easily parallelized for efficiency.

CONCLUSIONS

We have proposed a new DWS method that combines local-similarity-
weighted semblance and local-similarity-weighted stacking together to
improve the performance of final stacking sections. It should be noted that
weighted semblance and weighted stacking are not equivalent in improving
the final stacking section, and our tests on field data show weighted stacking
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plays a larger role. Field data numerical examples demonstrate the
effectiveness of the DWS method: high SNR and energy-focused reflection
events.

The main drawback of the new workflow lies in the imperfection of the
velocity analysis on the CMP gather with sparsely-spaced reflections.
Since a reasonable calculation of weighting function depends on the
quality of the reference trace, the choice of a more reasonable reference
trace and optimal parameter settings should be able to help in solving this
problem, and also potentially improving the continuity of the semblance for
the data with closely-spaced events.
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